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Abstract  

Additive manufacturing technology – Electron Beam Melting (EBM) is very promising for providing components 
with bulk density and high material performance, comparable to wrought material. However fatigue loadings are crucial for 
application in aerospace and automotive industries. Therefore it is necessary to predict the moment of the crack initiation 
and find the defect that acts as a stress concentrator within the considered element. The solution described in this paper 
is passive thermography method conducted during fatigue test of Ti6Al4V specimens as to measure temperature rise 
during the test. In order to achieve this objective, a thermal imaging system was proposed. 

1. Introduction  

Electron Beam Melting (EBM) is one of the powder-bed-fusion additive manufacturing technologies used to 
fabricate metallic objects. In EBM process metal powder is selectively melted by focused electron beam to form a layer of 
the object based on CAD data [1,2]. Most commonly applied in EBM material is Ti-6Al-4V, the material with excellent 
corrosion resistance, low weight ratio and mechanical properties [3]. That promoted applications in aerospace and 
automotive industries in components which are exposed to cyclic loading [1]. However, in additively manufactured metallic 
objects, internal defects such as pores, occurred quite common which has negative effect on fatigue properties. To avoid 
it Hot Isostatic Pressing (HIP) can be applied to close internal defects and improve fatigue properties [4]. Thus, it is 
necessary to assess fatigue properties in terms of applying additively manufactured components in critical applications.  

The use of infrared thermography allows detection of defects, whose presence in case of fatigue loads can lead 
to a significant reduction in the durability of a given component. According to [5] both active and passive thermography 
can be used for quality assessment. For example in case of superficial defects in coatings deposited on aerospace 
components a laser spot thermography may be used [6]. However in case of components subjected to external mechanical 
loading there is a possibility of passive thermography usage so as to determine their state.  In paper [7] authors mentioned 
that there is a possibility for using thermography in early fatigue of machinery components as well as during laboratory 
testing. According to [8] the defect inside the fatigue specimen results in local heating due to stress concentration. This 
fact served as a reason to use passive thermography for determination of damage initiation and its later growth in fabric 
materials [9] and flat metal specimens [10]. Moreover, Galietti et. al. distinguished three phases of temperature changes 
during the fatigue testing and determined the fatigue limit using temperature and phase data [5]. The subject of fatigue 
crack tip propagation was undertaken in paper [11]. However, the authors considered only model situation with pre-
prepared surface crack on the sample. 

 In this paper the thermal imaging system was developed in order to predict the critical propagation of fatigue 
crack and initiation of fracture. It was used in case of unidirectional fatigue testing of EBM fabricated Ti6Al4V samples. 
Subsequently basic crack initiation analysis was performed using industrial computed tomography (CT), which allows 
three-dimensional reconstruction of the internal and external geometry in a non-destructive manner for thermal imaging 
system verification. 

2. Experimental setup 

 The experiment described below consisted of fatigue testing trials during which a thermal imaging system was 
used in order to record changes in samples temperature. The aim of this study was to determine the moment of crack 
initiation and subsequently prepare a method for fatigue test interruption when it occurs. For verification of this experimental 
method of crack initiation detection a Computer Tomography system was used. 

2.1. Setup for fatigue testing 

For this study, hour-glass shaped specimens according to [12] were fabricated by EBM process using ARCAM 
A1 machine (Fig. 2 a). All of the samples were built in vertical orientations (Fig. 2 b). For processing Ti-6Al-4V alloy in 
EBM, ARCAM standard condition was used. After manufacture the specimens were subjected to Hot Isostatic Pressing 
and then machined to meet ASTM standard.  
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a) b) 

   
Fig. 1: Fatigue test sample: geometry according to ASTM E466 (a), build direction (b) 

The unidirectional tension-tension fatigue tests were carried out with the experimental setup consisted of servo 
hydraulic testing machine (Instron 8872) with sinusoidal loading test with frequency 50 Hz. The ratio (R) of fatigue test 
defined as: 

𝑅 =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
       (1) 

where σmax – maximum stress level and σmin – minimum stress level  experienced during the cycle, was established at 
value 0,1. Tests were performed at 3 stress levels, where σmax was 700 MPa, 800 MPa and 900 MPa. For each stress level 
the number of specimens used in the tests was 3. It is worth underlying that according to ARCAM standard [13] the yield 
strength of Ti6Al4V alloy obtained in EBM process is about 950 MPa. 

 

Fig. 2. Exemplary cyclic loading for σmax – 800 MPa 

2.2. Description of thermal imaging system 

The thermal imaging system for detection of crack initiation during fatigue testing consisted of thermal camera 
(FLIR SC7500), acquisition software ResearchIR and microprocessor based ambient temperature measurement system 
(Fig. 1). The additional temperature sensor DS18B20 was used for detection of ambient temperature changes since fatigue 
test can be time-consuming. The optics of the camera used for the temperature evaluation was 50 mm standard lens and 
the measured temperature range was set to 5°C to 70°C in camera control. The sampling rate was set to 1 image per 

second because of the test duration.  
In order to obtain reliable measurement of samples temperature during the test all of them were covered with 

black lacquer with known and constant emissivity. The input parameters for thermal camera as well as main measurement 
properties of the system were gathered in table 1. It is worth mentioning that based on common approximation: 

𝐼𝐹𝑂𝑉𝑚𝑒𝑎𝑠 ≈ 3 ∙ 𝐼𝐹𝑂𝑉𝑔𝑒𝑜𝑚      (2) 

the minimal size of measured object with this thermal imaging system should be about 0.9 mm. Tjis is therefore the 
system limit for detection of subsurface defect, that may cause cracking initialization. 
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a) b) 

  

Fig. 3: Experimental site for temperature measurement during fatigue testing: schematics (a), photograph (b) 

Table 1. Thermal imaging system configuration parameters 

Integration time (ms) Distance (m) Emissivity Trefl (°C) Tatm (°C) IFOVgeo (mm) 

0.735 0.9 0.92 21.2 21,7 0.3 

 

2.3. CT system for verification 

In order to evaluate the developed thermal image system for fatigue testing diagnosis and detection of crack 
initiation a Computer Tomography was utilized. The sample was placed on a rotating table, between x-ray source and flat 
panel detector, with the axis precisely adjusted to the center of the fan beam (Fig 4). To obtain a high resolution 
measurement, the sample was placed near the radiation source and only the area covering its central part was 
reconstructed. During the measurement, sample was illuminated with a radiation beam and single projections for each 
angular position of the sample, showing the degree of radiation absorption, were recorded. 

 
Fig. 4. Schematic illustration of cone beam CT system 

The 3D acquisitions and reconstructions were performed using cone beam CT within METROTOM 1500 system. 
Applied scan parameters and reconstruction were presented in table 2. 

Table 2. Scan parameters for CT reconstruction of samples 

Voltage [kV] Current [µA] Cu prefilter [mm] Integration time [s] Number of views Voxel size [µm] 

200 40 0,5 2 600 10 

 
For 3D reconstruction Filter Back Projection (FBP) method with Feldkamp algorithm was used. Data visualization 

and image processing was carried out using the VGStudio MAX 2.0 software. 
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3. Results and discussion 

The discussion of system capabilities that were experimentally tested were divided into section concerning 
observation of temperature changing until the specimen fracture and the tests with interruption when the crack initiation 
was observed. In every example of temperature measurement a maximal temperature inside a box region of interest was 
a parameter for evaluation. It is worth noting that this ROI was placed in the measurement part of the sample. 

3.1 Observation of the cracking 

 Although the temperature measurements were conducted for different stress levels, only a representative plot 
was depicted on figure 5. The sample temperature changes during fatigue testing were shown for 900MPa stress level. 
Furthermore the images acquired with thermal camera for particular time moments were depicted. Therefore the 
temperature chart can be divided into several different parts based on the specimen state. At the begging one can observe 
fast heating up of the sample and then there is a quasi-steady state with a slight increase in temperature. The most vital 
part of the plot in case of crack initialisation detection is from point 4 to 6, where the fracture occurs. In order to prevent 
the specimen from cracking but successfully acquire information about its initialization, the test should be stopped between 
points (4) and (5). This part of the plot is characterized by the change of the second derivative sign as the temperature plot 
becomes a convex function and its first derivative is rising. 

 

Fig. 5: Temperature of the measuring part of the fatigue sample during the testing with characteristic time steps 

highlighted: beginning of the test (1), heating-up (2), quasi-steady state (3), subsurface crack initialization (4), subsurface 
crack propagation (5), fracture of the sample (6) 

For more complex analysis the resultative number of cycles (N) and the temperature increase (ΔT) measured 
between points 4 and 6 on the temperature plot for each of the considered fatigue sample were gathered in table 3. It is 
worth noticing that N is not a good threshold parameter to stop the fatigue testing. On the other hand, the temperature 
increase ΔT is not correlated with the stress level or duration of the fatigue test. It might be related with the energy 
accumulated inside the defect, so indirectly with the size of subsurface crack. 

Table 3. Results of cracking observations for different stress levels 

Measured parameter Sample No. 
Maximum stress level - σmax 

700 MPa 800 MPa 900 MPa 

ΔT (°C) 

1 9.7 24.1 7.2 

2 17.1 15.6 4.5 

3 7.4 9.9 1.7 

N (cycles) 

1 2752422 697394 219302 

2 4184520 1170672 387926 

3 1090201 1502204 50890 
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3.2 Verification of the method with CT 

 
Based on a data discussed above, an exemplary specimen was chosen for fatigue test on 800MPa stress level. 

The aim of this experiment was to detect the moment, when the crack initialization starts and to interrupt the fatigue test 
using developed thermal imaging system. In the case of considered sample, the fatigue test was interrupted after 1210047 
cycles that was 24201 second from the beginning of the test (Fig. 6). The thermogram shown on Fig. 6a was recorded 
during interruption of the fatigue test and it shows a heated region on the right side of the specimen axis of symmetry. The 
temperature increase of the sample was approximately 0.6 °C and there was no trace of the cracking on the surface. 

 
a) b) 

  

Fig. 6. Data obtained during temperature of fatigue sample: thermal image recorded during test interruption 
(a), temperature chart for the time period around the interruption (b) 

 
In order to detect pores or discontinuities that resulted in heating up of the specimen surfaces, the sample was 

reconstructed before and after fatigue test. Figure 7a shows the result of the sample reconstruction together with the 
marked plane to which the corresponding cross-sections before and after crack initiation were compared. CT analysis did 
not reveal the occurrence any pores or discontinuities for the sample before fatigue test, as shown on the basis of a single 
2D projection (Fig. 7b), as well as a transparent 3D view for the entire volume of the sample (Fig. 8a). However, subsurface 
cracks were observed (Figure 7c) for the sample after fatigue test interruption. 

a) b) c) 

   

Fig. 7. The result of CT reconstruction: 3D view (a), cross-section before fatigue test (b), cross-section after 
the crack initiation (c) 

 
Additionally, CT analysis also enabled 3D visualization of fracture geometry that was registered at the time of 

initialization during cycling test, as shown in figures 8b and 8c. 
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a) b) c) 

 
  

Fig. 8. 3D transparent visualisation: sample scanned before fatigue test (a), sample scanned after the crack 
initiation (b), crack (fracture) characteristics – dimension and thickness (c) 

The measured fracture diameter was at the level 1.338 mm (volume of 0.033 mm³), while the thickness did not 

exceed 30 µm. Conducted CT examination indicate the occurrence and development of the fracture (crack) when the 
temperature of the sample, recorded with the use of a thermal imaging camera, increases.  

After performing several short fatigue tests with a number of cycles, the cracking of the sample was recorded by 
thermal camera. It is remarkable that in this case the maximal temperature during the fracture increased about 68 °C. The 

reason of this might be controlled growth of the defect that could accumulate more energy. Before the dramatic increase 
of maximal temperature inside concerned ROI one can observe sinusoidal change of temperature because of tension-
tension cyclic load. This change is noticeable in this case due to increase of frame rate to 25 Hz and the fact, that the 
loading frequency was reduced to 1 Hz. 

a) b) 

  

Fig. 9. Data recorded during the cracking of selected fatigue sample: thermogram (a), maximal temperature 
plot inside measurement part of the sample (b) 
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4. Conclusions 

The applied thermal imaging system allows detection of crack initiation and interruption of the fatigue test being 
conducted. Moreover the prepared experimental site permits investigating the cracking evolution until fracture by using CT 
examination. In the presented example, initiation of a crack with a linear size of 1.3 mm was detected using the developed 
system, what corresponds with the system accuracy estimated to 0.9 mm. 

It was shown that the number of cycles (N) is not a good threshold for interrupting the fatigue test as there is 
a large variance of this parameter even for the same level of stress. The increase of temperature (ΔT) is also not a proper 
quantity to use since it is not repeatable and it might strongly depend on the defect size that cause the cracking. The 
reliable parameter that can be used for fatigue interruption is therefore the sign of the second derivative of the temperature 
plot. When the sign becomes positive and the temperature starts to increase rapidly, the test should be stopped.  

Moreover, after the interruption and analysis with the CT system, the sample can be subjected to fatigue again in 
order to determine the evolution of the cracking. It may allow describing the critical size of the defect that cause fracture. 
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