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Abstract 

To address the needs for increasing efficiency in power conversion, stratified structures like thermal barrier 
coatings, are used to increase operation temperature. Also advanced material processing like 3D laser printing of metals 
and ceramics are based on a layer-to-layer process at high temperatures, resulting in non-homogeneous components. 
Both systems require more and more detailed investigation methods to characterise the material properties of the resulting 
structures and to optimize the relevant processes. To address the required needs in advanced material characterisation 
recently an attempt was started to develop a unique measurement set-up for advanced material characterisation. This 
method is based on the well know laser flash principle, which was improved by adding supplementary heating sources and 
additional detection channels. Combining different heating mechanism and heating times with the two-dimensional 
measuring of the thermal flow across the sample enables the determination of different opto-thermal parameters and other 
material properties, e.g. mechanical contact, electrical conductivity or optical data, which also depend on or affect the flow 
of heat. In this paper we describe the implementation of the different optical methods to measure the thermal heat flow by 
point-like and two-dimensional temperature measurement and present first results on several samples. 

1. Introduction 

The availability of modern fabrication methods and improvements in material science allow the application of 
layered structures on metallic substrates to prevent them from harsh environments. A typical example is the application of 
thermal barrier coatings (TBC) on turbine blades to prevent the nickel-based substrate from being destroyed by the 
combustion gas. Using such TBCs allows the increase of the operation temperature of the gas turbine, which increases 
the efficiency of the power conversion process. Using Yttrium stabilized Zirconium-oxide layers on Nickel based substrates 
is state of the art for modern gas turbines. However, the adhesion of such layers on the metallic substrate is not sufficient 
and intermediate layers have to be used to optimize the mechanical contact. However, insufficient adhesion of TBCs is still 
one of the main problems in the area of power conversion gas turbines, which requires a frequent control and replacement 
of the turbine blades. Up to now, the bad adhesion usually can only be measured destructively by cutting of such systems 
and looking at the resulting cross-section by raster electron microscopes. These methods are quite accurate but destructive 
and can only be applied after the operation of such systems and not during their operation. In particular for stationary gas 
turbines, which operation is quite costly, the shutdown of these systems should be put to an absolute minimum.  

Also components fabricated by the new additive manufacturing methods, which are based on a layer-on-layer 
process, are facing similar questions. The fancy and fragile structures built by such additive manufacturing methods pose 
the change of replacing conventionally fabricated components. However, only if they have the same material properties as 
the bulk material or structures manufactured by classical methods, like grinding, turning or milling. But is it not yet clear 
and guaranteed whether the novel processing technology is critically affecting the overall material properties of the 
component or not. Therefore, also in this area non-destructive testing of material properties, at best during the 
manufacturing process is highly demanded, in particular at the high fabrication temperature.  

The recently presented approach [1] is based on the well-known laser-flash-method. Here the temperature 
evolution of a short heat pulse at the front side of the sample is monitored by a spot-like temperature measurement at the 
backside of the sample [2]. The time evolution of the backside temperature rise is affected by the thermal properties of the 
sample and can be used to determine detailed information about the thermal and structural constitution of the sample [3]. 
In the recently presented approach the laser-flash-method was extend to additional heating and detection features, also 
allowing heating and detection at front and back-side, either separately or simultaneously as well as with different time and 
spatial resolutions [1]. Here we present the newly introduced detection channels, allowing additional measurement of the 
front side temperature rise and also two-dimensional temperature measurements using thermal imagers. In chapter 2 the 
underlying theoretical principles are shortly presented and the innovative idea of the measurement principle is described. 
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Chapter 3 gives a survey of the experimental realizations while chapter 4 presents the implementation of the front side 
temperature detection system. In chapter 5 first results of front – and back-side temperature measurements are presented 
and an application to a special approach in the field of thermal barrier coating with the respective results is shown. The 
paper closes with a short discussion and an outlook to further application of the innovative method. 

2. Theory and Method 

In this section the basic theory and the fundamental laser flash method is presented and the ideas for the 
improvement yielding the new method are introduced. 

2.1. Theory 

For the investigation of the layered and in-homogeneous structures the laser flash method was applied. Here a 
thin sample is heated at the front side by a laser pulse and the back side temperature is recorded as shown schematically 
in Figure 1 [1].  

 
Figure 1: Schematic of the laser flash method [1] 

 
Using a solution of the well-known one-dimensional heat-flow equation 
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where ∆T is the temperature rise of the sample, Q(t,x) the introduced heat power by the laser beam, λ the thermal 

conductivity, ρ the density and cp the specific heat at constant pressure of the material under investigation. For an 
instantaneous heat pulse at the front side of a homogeneous sample the solution of Eq. 1 was already given in 1962 by 
Parker et al. [2]. Also for layered samples the result was already presented in literature long ago [e.g. 3]. Measuring and 
evaluating the temperature versus time curve and knowing the thickness of the sample the thermal diffusivity of bulk 
samples can be determined [2]. The thermal parameters of layered samples can, in principle, also be determined, as long 
as the other material properties and the properties of the substrate are known [3]. In the case of a two layered sample the 
contact resistance in-between the two layers can be determined and can be used as an indication of the adhesion of the 
two-layers [3]. 

2.2. New Method 

Usually the sample is heated at one side (front side) and the temperature increase is measured at the opposite 
side (back side) [see eg. 2, 3].The intention of the new method is to determine additional material parameters and to obtain 
an indication for the adhesion without knowing the other material properties of the structure. To obtain these additional 
information, the laser flash method has to be improved significantly, in particular by adding additional heating and detecting 
channels. There have already been other attempts to adopt the laser flash method to measure other opto-thermal 
properties, mainly the hemispherical emissivity [see e.g. 4]. 
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Here further improvements of the laser flash method are presented to enable the measurement of other optical 
and thermophysical properties. In particular the mechanical adhesion of layers is aimed at to develop a non-destructive 
approach for qualifying thermal barrier coatings. This improvement is reached by implementing additional sensor systems 
to measure additionally the front side temperature as well as implementing rear side heating of the sample. To facilitate 
the measuring of the lateral heat spread also imaging systems will be applied. The resulting improvement of the laser flash 
set-up is shown schematically in Figure 2. Applying the front- and back-side excitation and detection systems 
simultaneously will allow the measurement of additional thermophysical parameters, as due to the different schemes the 
various parameters will influence the resulting front- or back-side temperature rise in different ways and can, therefore, be 
measured more easily. To obtain depth sensitive information different wavelengths for the heating and measuring channel 
will also be used. At first a qualitative information of the thermal resistance as an indication for the mechanical adhesion is 
aimed at [5]. A good adhesion will usually be accompanied by a good thermal contact [5] and, therefore, in case of front 
side heating of such a good adhering structure will result in a fast decrease of the front side temperature and a good and 
instantaneous rise of the temperature at the backside. A bad adhesion is correlated to a high thermal resistance, which 
results in a high and slow decreasing front temperature and a slow and delayed increase of the back side temperature. 
This behaviour is graphically displayed in Figure 3. 

 
Figure 2: Improvement of the laser flash method [1] 

 

 
 

Figure 3: Idea of simultaneous front- (left) and back- (right) side heating and detection (picture adopted to [6], 
detailed explanation in text) 

 

3. Experimental set-up 

To measure the front side temperature rise an additional optical temperature measurement channel has to be 
used. For that a HEITRONICS KT15II was used. This radiation thermometer has a pyroelectric detector and, therefore, 
requires a chopper. Due to that reason the time constant of this radiation thermometer is restricted. However, the shortest 
time resolution of the KT15II is 5 ms and this time resolution is sufficient to monitor the time evolution of the front side 
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temperature rise for most of the technological relevant material combination, such as metals, ceramics and compound 
materials used in additive manufacturing and in energy or process technology. However, as the time constant is decreasing 
the noise will increase and, therefore, this radiation thermometer can only be used for measuring the fast changing front-
side temperature at sample temperatures higher than about 300 °C.  

The KT15II is fixed at the bottom of the used laser flash set-up as shown in Figure 4. For the use as a front side 
laser flash detection system the KT15II must be directed to face the centre of the sample. The positioning can be performed 
with a pilot laser and a semi-transparent disc positioned in the sample position. 

 

Figure 4: Position of the radiation thermometer KT15II  
 

4. Results 

At first the newly implemented laser flash set-up was validated by measuring the poco graphite and steel reference 
samples provided by the manufacturer of the laser flash set-up, Netzsch. The results of these measurements are shown 
in Figure 5 and Figure 6. It can be seen that the obtained results are in excellent agreement with the reference values, 
indicating a validation of the set-up over the whole temperature range from room temperature up to 2800 °C.  

 
Figure 5: Results of the measurement of the steel reference sample. The Inset shows the relative deviation, 

which is well below 1.5% for nearly the whole temperature range. 
 

In a second step the front side detection system was used to measure the front side temperature evolution after 
heating the front side of the sample by the laser pulse. For that measurements a sample mount was used, which allows 
the control of the heater temperature by a thermocouple and the radiation thermometer was focused on the centre of the 
heated sample area (see Figure 7). This allows the measurement of the front side temperature rise simultaneously to the 
measurement of the back side temperature rise. The obtained measured general temperatures at the front side is shown 
in Figure 8. Here a series of heating by laser pulses is shown after the temperature of the furnace was stabilized to about 
325 °C. 



 
14th Quantitative InfraRed Thermography Conference, 25 – 29 June 2018, Berlin, Germany 

 

 

 5 
 

 
Figure 6: Results of the measurement of the poco graphite reference sample. The Inset shows the relative 

deviation, which is well below 6% for nearly the whole temperature range. 
 
The signals of Figure 8 for a single pulse where shown in Figure 9 together with the simultaneously measured 

back-side temperature rise. The back-side signal was scaled to fit the front-side signal at longer times.  

 

Figure 7: Sample mount and location of measuring spot of the radiation thermometer for measuring the front side 
temperature rise (red arrow at center of sample) 

 
Figure 8: Result of the temperature measurement at the front side of the sample configuration of Figure 7 using a long 

wavelength radiation thermometer. 
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Figure 9: Simultaneously measured front- and back-side temperature. The back-side temperature rise was scaled to fit 
the front-side temperature rise after the first steep decrease. 

5. Outlook and Acknowledgement 

The results of Figure 9 show that the front side temperature rise can indeed be measured by the implemented 
radiation thermometer. In a next step the front and back side temperature measurement will both be performed with 
calibrated radiation thermometers to obtain the absolute temperatures at front and back side simultaneously. In a further 
step the tube furnace will be removed by a small size induction heater, which will then allow to use CCD, CMOS and 
thermal imager systems to investigate the lateral heat spread with high temporal and lateral resolution. 
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