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Abstract 

This paper reports an investigation on efficient finite element (FE) simulation of pulse infrared thermography of 
CFRPs. The very short duration of pulse heating as well as the layered structure and the anisotropic thermal properties of 
CFRPs impose specific constraints to the FE analysis of this transient thermal problem. Hence, for FE based optimization 
of pulse thermographic experiment, appropriate selection of FE parameters is critical so that the computational intensity is 
reduced without compromising the defects’ quantification. Various modelling aspects including non-uniform heat flux 
induced by the flash lamp, element formulation and appropriate mesh sizing of out-of-plane and in-plane directions and 
the defect modelling approach are discussed. The effect of the modelling approach on the defect quantitative parameters 
and post-processing of calculated thermal images is investigated. Alternative modelling approaches are proposed and 
compared in terms of their reliability for defect quantification and their computational cost. 

1 Introduction  

Optical infrared thermography (IRT) has been attracting significant industrial interest to be developed as a 
nondestructive testing (NDT) technique with trusted reliability. An optical source radiates heat onto the surface of the test 
piece and an infrared camera provides full-field contactless measurement of the surface temperature evolution. This 
temperature evolution is interpreted for the detection and quantification of damage [1]. Lock-in and pulse thermography 
are the two common approaches of optical IRT. In lock-in thermography (LT) the excitation power is harmonically 
modulated at a particular frequency while for pulse thermography (PT)  a very short heat pulse is emitted to the sample’s 
surface with a flash lamp. PT enables excitation of a broad range of frequencies through a single excitation cycle and 
provides more information about the subsurface defects compared to LT, though with reduced SNR.  

Simulation of IRT is of great importance as it provides support for model-based development, implementation and 
optimization of the experiment, and finite element FE analysis has proved its robustness in serving this purpose [2-5]. 
Optical IRT is based on thermal wave propagation through the depth of the test piece and its interaction with subsurface 
defects. Hence, the FE results should ideally be comparable with the promises of the IRT experiment and have to (i) 
provide fast and reliable simulation of the experiment to inspect a relatively large area, (ii) adequately define the through 
depth thermal behavior and (iii) provide thermal images similar to those measured by the infrared camera.   

CFRPs have wide structural application and are prone to various defect types e.g. fiber breakage, matrix cracking 
and delamination. The strongly anisotropic thermal conductivity and multi-layer structure of CFRPs  significantly affect the 
thermal wave propagation which should be appropriately taken into account in the FE model.  

This paper reports an investigation on FE analysis of PT for inspection of CFRP composite plates with 
delamination type of defect. The effect of various FE modelling parameters on the accuracy and reliability of results is 
studied including in-plane and through-thickness mesh density, uniformity of the mesh grid and the element formulation. 
Different defect modelling approaches and their thermal signature are also compared. Competency of alternative FE 
modelling approaches in damage identification is compared and principal component analysis (PCA) [7] is implemented to 
evaluate the results. FE analysis is performed by ABAQUS CAE in conjunction with MATLAB for parametric study and 
post-processing of the results. 

2 Modeled CFRP plate and optical excitation 

A 6-plies unidirectional ([0]6) CFRP plate as shown in figure 1  (with fibers along the x-axis) is modelled including 
three 5 mm square delamination defects at three different depths of the laminate. Temperature dependent thermal 
properties are assumed for the unidirectional CFRP as measured by Joven, Das [8], with room temperature diffusivity of 

𝛼11 = 5.39 × 10−6 m2/s and 𝛼33 = 6.16 × 10−7 m2/s  respectively along and perpendicular to the fibers. The top surface is 

subjected to a pulse heating excitation as shown in figure 1(b) and its thermal response is analyzed for evaluation of PT in 
reflection mode. ABAQUS brick elements with temperature degree of freedom and linear (8-Nodes) or quadratic (20-
Nodes) formulation are used, available in ABAQUS Standard. The delaminations are initially modelled by a perfect 
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debonding of its adjacent plies i.e. an in-plane crack. This model results in a perfect thermal barrier for the through-
thickness thermal wave propagation. Other defect modeling alternatives are explained in the Section 4. 

 

 

 

(a) (b) 
Fig. 1: Modeled unidirectional CFRP [0]6 with three in-plane defects (delaminations) of the same sizes at 

different depths , (a) cross-section and (b) top view of the CFRP and dimensions 
 
The CFRP with initial room temperature of 𝑇0 = 25℃ is exposed to a pulse heating. Convective and radiative 

thermal interactions are defined for the top and bottom surfaces of the plate which dissipate its heat energy into the 

surrounding medium. The assumed coefficient of heat convection and the emissivity respectively are ℎ = 5 W/m2. k and 

𝑒 = 0.9. The optical source is a 𝑄 = 6 kJ flash lamp with beam angle of 90° and pulse time of 𝑡𝑝 = 10 ms where 25% of the 

lamps input energy is assumed to be effectively emitted to the CFRP’s surface [9, 10]. The in-plane wave propagation 
induced by the non-uniform heat radiation of the lamp significantly affect the interaction of defects with thermal wave and 
their thermal signature. Modelling the radiative interaction of the lamp and sample, to account for this phenomena, proved 
to be highly computationally intensive. Therefore, a Gaussian distribution was considered for the spatial gradient of the 
flash lamp’s heat flux as given in Eq. (1): 

𝑔(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑥2 + 𝑦2

2𝜎2
) 

(1) 

where 𝜎 is the standard deviation defining the extent of Gaussian distribution in 𝑥𝑦-plane.  It can be shown that 
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 which 0.95 of it is included in the radius √𝑥2 + 𝑦2 ≤ 2𝜎. Therefore, the Gaussian distribution of 

the lamp’s heat at a radius of 𝑟 = 2𝜎 (to include 95% of lamp’s emitted energy) over a surface with emissivity 𝑒 at an angle 

𝜃 is: 
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The relative position of the CFRP sample and the flash lamp and the Gaussian distribution of heat flux at a 
distance of 500 mm for 𝜃 = 15° are schematically depicted in figure 2(a) and the resulting heat flux on the CFRP sample 
is shown in figure 2(b). 

 
 

(a)  (b) 
Fig. 2: Gaussian distribution of heat flux (a) at a distance of 500mm from the source of radiation (assuming a 

beam angle of  90°) and (b) to the resulting heat flux on the CFRP sample’s area (placed at 15* angle). 
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3 FE model and quantitative defect parameters 

In this section the effect of FE mesh parameters on quantitative parameters of the defect are investigated. This 
allows to understand the trade-off between computational cost and reliability of FE analysis for simulation of defect 
quantification through PT. Temporal gradient of surface temperature and that of its second time derivative at the center of 
defected areas, and also their contrast with a reference non-defected point (figure 1) are selected. The temperature 
contrast of defected and non-defected area can reveal the defects. However, the second time derivative of the temperature 
provides an earlier indication of the defect and is independent of the magnitude of the out-of-plane heat flux.  Of course, it 
is slightly affected by in-plane thermal waves induced by non-uniform heating. 

3.1 Initiating FE model 

The very short pulse of the flash lamp stimulates very high frequency out-of-plane thermal waves in the top surface 
of the sample which significantly increase the temperature to a very small depth corresponding to the penetration depth of 
those frequencies. The non-uniform heating of the lamp also induces in-plane thermal wave propagation with relatively 
much smaller gradients compared to out-of-plane wave. After the heating stage, the sample starts dissipating heat into the 
environment at a very high rate until its surface temperature is reduced. Then it gradually cools down until reaching the 
steady state.  

Hence, for reliable and efficient modelling of this transient thermal problem it is necessary to properly select an 
appropriate FE mesh matching the underlying phenomena. The steady state 1D thermal wave equation results into a highly 
damped and dispersive thermal wave: 

𝑇(𝑥, 𝑡) = 𝑇0𝑒
−

𝑥
𝜇𝑒

𝑖(𝜔𝑡−
𝑥
𝜇

)
 

(3) 

where 𝜔 = 2𝜋𝑓 is the circular frequency, t is time and 𝜇(𝜔) = √
2𝛼

𝜔
 is the diffusivity length and 𝛼 the diffusivity of constitutive 

material. The diffusivity length 𝜇 defines the power of exponential decay as well as the wavelength of the harmonic term 

𝜆 = 2𝜋𝜇 in spatial domain 𝑥. The wave amplitude at diffusivity length 𝜇 , half-wavelength 0.5𝜆 and wavelength 𝜆 reduces 
to 36.79% , 4.32 % and 0.19%, respectively. Therefore, the frequency response of interest defines the spatial gradient of 
temperature and as such the appropriate mesh element size.  

CFRPs generally need to be modelled as a layered medium in order take into account the anisotropic thermal 
properties of the plies in an arbitrary lay-up. Hence the finite element model normally has at least as many element layers 
as the number of plies. All plies have the same out-of-plane diffusivity regardless of their orientation and the lay-up 
predominantly affects the in-plane wave propagation. As an initial guess, the global in-plane element size ∆𝐿𝑒 of the 

orthotropic model is defined as a factor of average wavelength at the highest frequency of interest for thermal analysis 𝜔𝑀: 

∆𝐿𝑒 =
𝜋(𝜇11(𝜔𝑀) + 𝜇22(𝜔𝑀))

𝑛𝐿
 

(4) 

where 𝜇11 and 𝜇22 are orthotropic diffusivity lengths along and perpendicular to fibres, respectively, and 𝑛𝐿 is an scaling 

factor. In this study the lowest frequency associated with the pulse duration 𝑡𝑝 (i.e. considering the pulse time as a half 

cycle) is defined as the maximum analysis frequency 𝜔𝑀 = 𝜋/𝑡𝑝, and a scaling factor of 𝑛𝐿 = 1 is initially assigned. The 

effect of out-of-plane mesh distribution, scaling factor 𝑛𝐿, and spatial gradient of in-plane mesh on defect quantification are 
investigated in the following sections.  

There is a correlation between the lower limit of time increment ∆𝑡𝑚𝑖𝑛 and the element size ∆𝐿𝑒 in the direction 
with the highest gradients in order to ensure that the calculated thermal behaviour is valid. This limit is determined based 
on the minimum time required for the heat to propagate through the element’s characteristic length ∆𝐿𝑒: 

∆𝑡𝑚𝑖𝑛 =
∆𝐿𝑒

2

𝑛𝑡𝛼
 

(5) 

where according to ABAQUS documentation a value of 𝑛𝑡 = 6 is recommended. For a material like CFRP which has 
relatively low out-of-plane diffusivity (through which highest thermal gradients occurs) this lower limit of time increment is 
quite large compared to the pulse time. Therefore, very small elements are required to adequately simulate the thermal 
gradients of top surface during pulse heating and immediately after it (i.e. for evaluation of shallower defects with early 
thermal indications). The rate of thermal gradients significantly reduces from beginning of heating until later stages of 
cooling down, and it is best to adopt a gradient FE mesh for highest computational efficiency as discussed in the following 
section. 

3.2 Through-thickness FE mesh  

The top ply of the model is exposed to the pulse heating and experiences extremely high temperature gradient 
during the heating stage and a short time immediately after it. At the lowest frequency corresponding to the pulse time 
0.5/𝑡𝑝 = 50 Hz the out-of-plane wavelength in CFRP model is 0.393 mm which at half of this wavelength (i.e. less than a 

ply thickness) the wave’s amplitude reduces to just 4.32%. An element with quadratic formulation may capably define this 
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thermal gradient. In case of using linear elements it is advised to enhance the out-of-plane model of the top ply with a 
graded multi-layer mesh as shown in the Figure 3 in which the element size biasedly reduces from bottom to top. 

 

 
Fig. 3: FE model and graded mesh of the top ply 

 
To study the effect the top ply’s mesh density, the CFRP is modelled by linear and also quadratic elements, and 

the top ply is modelled with 1 to 10 layers of elements in linear model and with 1 to 4 layers of element layers in quadratic 
model, all with biased graded distribution. No noticeable improvement was observed for having more than 6-layers of linear 
elements and more than 2-layers of quadratic elements. According to figure 4(a) the calculated surface temperature at the 
center of a defected area vitally depends on the FE mesh of the top ply. Although linear and quadratic FE models seem to 
converge in terms of magnitude of temperature, their difference in terms of second time derivative of temperature is shown 
in figure 4(b). 
 

  
(a) (b) 

Fig. 4: Thermal response at the centre of the defect  at depth 0.6 mm for various FE meshes, (a) 

temperature and (b) 2nd time derivative of temperature versus time;( 𝑛𝐿 = 1) 
 

In practice, the measurement during the heating flash is not generally used because it is too short to reveal a 
subsurface defect of interest, and it is actually not measurable due to very high intensity of flash radiation and saturation 
of the infrared camera. Moreover, the existence of a defect may be realized due to the difference of thermal response at a 
defected and non-defected area.  Therefore, the contrast of surface temperature and its second time derivative at the 

center of defected areas and a reference non-defected area 𝑇𝑠 (see figure 1) are further studied during cooling the stage 
only as shown in figure 5.  

Figure 5(a) demonstrates the difference of  temperature contrast for the three defects and their sensitivity to FE 
model formulation and the top ply’s mesh density. The quadratic model leads to initially lower temperature contrast right 
after the heating stage and slightly higher temperature contrast once the thermal wave reflected from the defect reaches 
the top surface. Regarding the second time derivative contrast as shown in  figure 5(b) the linear and quadratic model have 
good agreement except of their deviation at the local minimum which is simply caused by the time resolution of the FE 
solution. Other than the top ply, the mesh resolution of the lower plies also contributes to the accuracy of the calculated 
temperature on the top surface. According to the thermal wave theory (Eq. (1)), the deeper the ply is, the lower frequency 
response and therefore less out-of-plane temperature gradients it experiences. 
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(a) (b) 

Fig. 5: Thermal response at the centre of defected area  for various element layers in the top ply, (a) 

temperature and (b) 2nd time derivative of temperature versus time;( 𝑛𝐿 = 1) 

As evidenced by the results shown in figure 6, having more than one layer of linear elements in lower plies slightly 
changes the contrast of temperature and its second time derivative. This deviation reduces by the defect’s depth. However, 
the linear and quadratic models do not converge yet due to the fact that quadratic formulation also affects the in-plane 
wave propagation phenomena and thermal response of the non-defected reference point. 
 

  

(a) T Log d 
Fig. 6: Thermal  response at the centre of defected area for various number of element layers in lower plies, 

(a) temperature contrast and (b) 2nd time derivative of temperature; in all cases the top ply is modelled by a graded 

mesh (6-layers linear or 2-layers quadratic) ;( 𝑛𝐿 = 1) 
 

Overall, the linear model with 6-layers of graded mesh in the top ply and single layer for other plies provides 
reliable results for a computational time of 10.16 minutes, compared with the quadratic model with 2-layers in top ply which 
has an almost double computational time of 23.41 minutes (Intel Core i7-7820HQ CPU @ 2.90 GHz, RAM 32 GB). One 
may consider 2 element layers for the lower plies of linear FE model which increases the computational time of current 
model to 14.19 minutes. However, for thicker laminates with numerous plies, it is sufficient to consider more than one 
element layer only for a few top most plies which contribute in the high frequency thermal response. 

3.3 In-plane FE mesh  

Other than out-of-plane mesh density, the in-plane mesh density of the FE model should also be defined such 
that the in-plane wave propagation induced by non-uniform heating and in-plane diffusion of reflection from the defects 
can be reliably calculated. In this section the implemented formulation (Eq.(4)) is examined with three different scaling 
factors of 𝑛𝐿 = 0.5, 1.0 and 2.0. According to the contrast results shown in figure 7, the coarsest  in-plane mesh 

corresponding to 𝑛𝐿 = 0.5 shows a significant deviation while the denser meshes corresponding to 𝑛𝐿 = 1.0 and 2.0 show 
a quite good agreement particularly in terms of contrast in the second time derivative of temperature (see figure 7(b)). 
Regarding the contrast of temperature itself, the deepest defect indicates a deviation of results by 𝑛𝐿 = 1.0 and 2.0. This 
can be justified by the fact that the deeper the defects is, the more it is affected by the 3D heat diffusion. However, the 
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results of the quadratic FE model with 𝑛𝐿 = 1.0 still have slight deviation from the linear FE model at the onset of rise of 
temperature contrast induced by the defects. 

A noteworthy subject concerning the in-plane mesh of FE model for simulation of PT, is the distribution of nodes 
on the top plane exposed to the heat flux. If linear elements with lumped heat capacity approximation are used, then a 
non-uniform grid of nodes leads to spurious spatial temperature fluctuations as shown in figure 8(a). The nodes surrounded 
by bigger elements have higher lumped capacity and therefore lower temperature rise, and vice versa. This error provides 
misleading spatial gradient of temperature particularly in heating stage and immediately after it during which the nodal 
temperature is dominantly determined by the heat flux in the absence of heat reflection from defects. Increasing the time 
increment of transient analysis or using extremely small elements may fix this issue, which the first approach is limited by 
the very short duration of pulse and the second approach imposes computational cost.  

 

 
 

(a) (b) 
Fig. 7: Thermal response at the centre of defected area for various in-plane meshes , (a) temperature 

contrast and (b) 2nd time derivative of temperature; in all cases the top ply is modelled by graded mesh (6-layers linear 

or 2-layers quadratic) ;( 𝑛𝐿 = 1)  
 

However, as demonstrated in figure 8(b) and (c), there are other two more alternatives: (i) use of quadratic 
elements in case of requiring non-uniform mesh or (ii) use of linear elements if a uniformly structured mesh is possible. 
Although, the CFRP sample studied herein can be simply modelled by a structured mesh, it is generally not possible when 
components with arbitrary geometry are to be modelled. A fully quadratic model is costly, and only the topmost ply of the 
CFRP is subjected to the heating pulse and experiences the very high temperature gradients in the FE model. Hence, a 
computationally efficient approach for FE modelling with free non-uniform mesh is to use quadratic elements only in the 
top ply.  
 

   
(a) (b) (c) 

Fig. 8: Spatial gradient of temperature at the end of heating pulse 𝑡 = 10 ms for various FE mesh 

types, (a) non-uniform (free) mesh of linear elements, (b) non-uniform mesh of quadratic elements and (c) 
uniform (structured) mesh of linear elements ;( 𝑛𝐿 = 1) 

 
In order to assess the influence of element formulation on the thermal response of the top surface and on the damage 
quantification, three different FE models with free non-uniform mesh are evaluated by PCA [7] of the cooling stage. PCA 
determines the principal independent behavior of the response by defining the orthogonal vectors of measured data on a 
statistical basis. The modelling parameters considered for the three alternative FE modelling approaches are given table 
1 , and the relevant PCA results are depicted in figure 9.  
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Table 1. FE modelling alternatives with non-uniform in-plane mesh density and  𝑛𝐿 = 1.0 

Abbreviation 
Top ply elements Lower plies elements Run time* 

(min) Formulation Element layers Formulation Element layers 

MA1 Quadratic 2-Layers Graded Quadratic 1 23.11 

MA2 Quadratic 2-Layers Graded Linear 1 11.18 

MA3 Linear 6-Layers Graded Linear 1 10.89 

    * Intel Core i7-7820HQ CPU @ 2.90 GHz, RAM 32 GB 
 

      
PC1 PC2 PC3 PC4 PC5 PC6 

(a) PCA of results by MA1 (see table 1) 

      
PC1 PC2 PC3 PC4 PC5 PC6 

(b) PCA of results by MA2 (see table 1) 

      

PC1 PC2 PC3 PC4 PC5 PC6 
(c) PCA of results by MA3 (see table 1) 

Fig. 9: Influence of FE modelling approach (with non-uniform in-plane mesh) on PCA of the 

thermal response calculated for a CFRP sample with in-plane crack type defect 

 
The PCA results shown in figure 9 clearly demonstrate the difference of spatial gradient of temperature on the 

top surface for the different FE modeling approaches. The fundamental principal components PC-1 to PC-3 are almost the 
same regardless of the minor fluctuations visible in the non-defected area of PC-3 corresponding to the MA3 with non-
uniform mesh of linear elements.  The fully quadratic FE model MA1 has smooth high order principal components, the top 
quadratic model MA2 improves PC4 and PC5 with slightly added computational cost compared to the fully linear model 
MA3 which has significantly degraded PC4 to PC6 with intense localized fluctuations.  

Consequently, the top quadratic model MA2 can be a computationally efficient and reliable approach for FE 
modelling with non-uniform in-plane mesh density. It is noteworthy that in practice, the noise level of thermal images taken 
by the infrared camera already degrades the spatial and temporal fluctuation of measured values which may alleviate the 
degrading effect of non-uniform mesh density. This depends on the noise level of the camera for which a PT experiment  
is to be simulated and also the signal to noise ratio of defects according to their depth and thermal resistance.   
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4 Thermal resistance of a delamination and post-processing of its noisy FE thermal response 

So far in this paper, the delamination was modeled by a perfect thermal barrier through an in-plane crack which 
assigns disconnected node pairs to the plane of defected area between the two adjacent plies of the delamination. 
However, in reality the delamination may be an air-filled gap between two plies or, as in common research practice, 

mimicked by e.g. a PTFE (teflon) insert. Here, we consider a thickness of 13 μm for both. This value is chosen as it is the 
advised thickness to represent a delamination with a teflon insert [11].   

Figure 10 compares the thermal response of delaminations modeled as (i) an in-plane crack, (ii) an air-filled gap 
of 13 μm and (iii) a teflon insert having the same thickness of 13 μm [11]. Thermal conductivity of 0.024 W/m. K, constant 

volume heat capacity of 718 J/kg. K and density of 1.225 kg/m3 is considered for air at room temperature, and thermal 

conductivity of 0.25 W/m. K, heat capacity of 1050 J/kg. K and density of 2200 kg/m3 for the teflon. 

Figure 10(a) shows the surface temperature rise at the center of the defects and figure 10(b) shows the 
temperature contrast with the non-defected reference point. As the state of the art cooled infrared cameras have noise 
equivalent differential temperature (NEDT) of less than 20 mK, this level is indicated in the contrast data of figure 10(b) to 
highlight the portion of defect’s thermal signature which is expected to be measured by such a camera. Evidently, the crack 
leads to highest temperature rise and contrast, while the teflon insert shows the lowest one. 

  
(a)  (b) 

Fig. 10: Thermal response at the center of various defect types, (a)  temperature rise with respect to initial 

temperature 𝑇0 = 25°𝐶 and (b) temperature contrast with respect to temperature of a non-defected point  𝑇𝑠 as shown in 
figure 1 

(Note: the samples with 13 𝜇𝑚 defects, have increased thickness of 3 × 13 = 39 𝜇𝑚 equivalent to 3.25% ) 

5  Conclusion 

FE simulation of PT for inspection of CFRPs with delamination type defects was investigated. The effect of various 
FE parameters on the accuracy and reliability of the results were studied including in-plane and through-thickness mesh 
density, uniformity of the mesh grid and the element formulation. Different defect modelling approaches and their thermal 
signature were also compared.  

A graded mesh in the top ply of CFRP was proposed to accurately model the heating of top surface during a short 
pulse. 6-layers of linear elements and 2-layers of quadratic elements both proved to be adequate for modelling a 10 ms 

pulse on a CFRP laminate with a ply thickness of 0.2 mm. Although the thermal response of a non-graded mesh converges 
to that of graded mesh shortly after cooling stage starts, this part distorts the thermal response of areas with shallower 
defects and affects their quantitate evaluation. Moreover, it is vital to understand the maximum temperature rise in specific 
sample in order to avoid its degradation by excess heat. 

Linear elements with lumped heat capacity approximation showed high sensitivity to the non-uniform in-plane 
mesh density an led to erroneous spatial fluctuation of  temperature on the top surface. FE modelling alternatives were 
recommended and evaluated, among which, a model with quadratic element formulation only in the top ply improved the 
results with slightly higher computational cost compared to a fully linear model. However, for defects with low thermal 
contrast (i.e. those with low thermal resistance or deep ones) a fully quadratic FE model is essential so that the trace of 
defects thermal contrast is not faded out by spurious temperature fluctuations induced by linear elements of lower plies.  

The delamination was modeled by an in-plane crack (i.e. perfect debonding of plies), an air-filled gap and also, 
as in common research practice, by a teflon insert. The thermal contrasts calculated for these three different modelled 
delaminations were quite different as expected from their significant difference in thermal resistance. Therefore, for FE 
evaluation of PT of delaminated CFRPs, appropriate selection of defect modelling is essential to avoid underestimation or 
overestimation of this NDT technique. 
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