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Abstract 

Three nondestructive testing techniques, namely, active infrared thermography, laser vibrometry and laser 
ultrasound, have been comparatively applied in the inspection of a graphite epoxy sample characterized by a 
complicated geometry to demonstrate advantages and drawbacks of each technique in the detection of various types of 
defects.  

1. Introduction  

Most previous studies in nondestructive testing (NDT) of composite materials have been related to particular 
inspection techniques or particular types of defects in flat reference samples. In graphite epoxy composites, either impact 
damage or insert-like defects have been investigated [1-2]. Few works were dedicated to comparison of efficiency of 
various NDT methods applied to samples of complicated shape [3-4]. In this study, we apply three different NDT 
techniques, namely, active infrared (IR) thermography (with both optical and ultrasonic stimulation), laser vibrometry and 
laser ultrasound, to the detection of three types of defects (wall thinning, impact damage and cracks) in a curved part 
made of a graphite epoxy composite. Such parts are widely used in the aviation and aerospace industries. 

2. Test sample 

The 250×100×2.5 mm graphite epoxy test sample shown in figure 1 represented a fragment of a composite 
cylindrical case used in the aerospace industry. The main panel of a curved shape was strengthened with two types of 
ribs also made of graphite epoxy and contained three artificially-made defects (specified as 1, 2 and 3 in figure 1): two 12 
mm-long thin vertical slits simulating cracks, local wall thinning with 15 mm-diameter material loss from 40 to 50% and 15 
J impact damage. Since thinning-like (“corrosion-type”) defects are not typical in real composite parts, this kind of defect 
was used to show how local variations of main panel thickness and the presence of ribs affect surface temperature. Two 
other defects, in fact, simulated composite cracking that can occur in both lateral and in-depth directions. The through-
the-sample cracks could not be detected visually, therefore, to some extent, they simulated vertical “kissing” cracks 
which are typically hard to detect by applying common NDT techniques. 

 
 

Fig. 1: Test graphite epoxy sample (rear view, defect 1 - through-the-sample(“kissing”) cracks,  
defect 2 - 40-50% wall thinning, defect 3 - 15 J impact damage, square dashed area was tested by laser 

ultrasonics) 

Defect  D1 
Defect  D2 

Defect  D3 

Impact damage area 

https://creativecommons.org/licenses/by/4.0/deed.en


 

14th Quantitative InfraRed Thermography Conference, 25 – 29 June 2018, Berlin, Germany 
 

 

 2 
 

3. Inspection techniques and results 

3.1. Optical stimulation 

The active IR thermographic method has been applied in its “classical” implementation, i.e. by involving optical 
and ultrasonic excitation. A flash tube (5 ms, 1600 J) and 2 halogen lamps (1 kw each) have been routinely used in a 
one-sided procedure to result in IR image sequences which included from 50 to 500 images. Both pulsed and thermal 
wave test procedures have been implemented. The laboratory setup has been designed around an Optris-450 IR module 
and included the home-made software providing data acquisition and processing by using most of known algorithms, 
merely to mention Fourier and wavelet transforms, principle component analysis (PCA), correlation, normalization, etc. 
An example of the resulting image obtained under optical stimulation is shown in figure 2a. The efficiency of each NDT 
technique (except laser ultrasound) has been evaluated by using the known concept of signal-to-noise ratio SNR 
= |𝑈𝑑 − 𝑈𝑛𝑑|/𝜎𝑛𝑑, where 𝑈𝑑,𝑛𝑑 are the signals in defect (d) and non-defect (nd) areas, and 𝜎𝑛𝑑 is the standard deviation 

in a chosen non-defect area.  
Flash heating was not powerful enough to ensure a detectable temperature elevation over the area with 

material loss while two other defects appear clearly in the source image (figure 2a). Applying PCA has allowed to stress 
the material loss (SNR=7) but worsened visibility of two other defects (figure 2b). This is a typical selective feature of the 
PCA method which concentrates particular types of temperature patterns in particular components. The thermogram in 
Fig. 2c illustrates why halogen lamps are often used in active thermal NDT devices due to high energy delivered for 
some seconds of heating (see the results of the pulsed test in figure 2d). However, the highest SNR values for all three 
defects appeared in the case of low-frequency thermal waves (figure 2d).  

 

  
a) 
 

b) 

  
c) d) 

 
Fig. 2: Test results, optical heating: a-Xenon tube, source image, b-same as a), PCA image; c-halogen lamps, 

pulsed heating for 10 s; PCA image; d-halogen lamps, frequency 0.07 Hz, PCA image  
 

3.2. Ultrasonic stimulation 

Ultrasonic stimulation was performed by using a magnetostrictive device providing continuous (long-pulsed) 
stimulation with 22 kHz mechanical waves, while the electric power supplied to the magnetostrictive indentor was in the 
range from 50 to 500 W (see also [2-4]). When the indentor was firmly pressed onto the sample front surface in the 
sample centre, the defects 1 and 3 have been reliably detected providing fairly high SNR values while the indication of 
Defect 2 was hidden within the stimulation area (figure 3) it cannot detected by ultrasonic IR thermography because of a 
lack of internal friction. High SNR that are typical for this method of NDT values are conditioned by the principle of “dark 
field” that is characteristic for ultrasonic IR thermography. This means that defect-free areas do not change their 
temperature as a result of stimulation thus leading to very small values of temperature standard deviation 𝜎𝑛𝑑. The big 

divergence in the SNR values (see figure 3) are explained by a strong non-linear dependence of temperature signals on 
position of the simulation point.  
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Fig. 3: Temperature distribution on sample surface under ultrasonic stimulation  
(22 kHz, 300 W electric power, magnetostrictive device in the centre) 

3.3. Laser vibrometry 

The technique of laser vibrometry combined low-power ultrasonic stimulation and vibration measurement by 
using a scanning laser Doppler vibrometer (SLDV) PSV-500-3D from Polytec (see also [5-7]). The input voltage up to 
120 V amplitude from AWG-4163 function generator via a voltage amplifier AVA-1810 was applied to the piezo-
transducer clamped onto the front side of the sample to excite flexural waves in the frequency band from 25 Hz to 100 
kHz with accuracy of ±25 Hz. A scanned area consisted of 20×50 points. The total vibration pattern shows the clearly 
visible defects under a relatively low ultrasonic load (~50 mW of acoustic power). The magnitude of vibration velocities 
over defects varied from 0.7 to 1.5 mm/s while amplitude of vibration velocity in defect-free areas is about 0.2 mm/s. In 
this way, the difference in velocities resulted in the values of signal-to-noise ratio of 11, 5 and 12 for defects 1, 2 and 3 
respectively. It is worth noting that, when performing laser vibrometry, the inspection time reached 4 minutes if 
resonance frequencies adherent to the defects were not determined, while the search for particular resonances 
approximately doubled this time.  

The most important information about defects is supplied by analyzing amplitude-frequency characteristics of 
samples under test. For each of three defects in the test sample from figure 1, we found resonance frequencies at which 
local vibrations are maximal (see figure 4). At the frequency of 2.275 kHz, the D1 area was characterized by mean 
vibration velocity of  62 µm/s and produced SNR=23 in regard to mean ‘non-defect’ vibration of 4.05 µm/s (see the 
formula for SNR above). In the D2 area, the intensity of resonance vibrations exceeded those in a non-defect area by 14 
times reaching the value of  51 µm/s at the frequency of 3.25 kHz: the corresponding SNR value was 21. Respectively, in 
the D3 area, the mean vibration amplitude was 73 µm/s  at the frequency of 2,65 kHz (mean ‘non-defect’ value 6,5 µm/s) 
with the maximum SNR=22. 

Since the resonance frequencies for all defect areas were close, the technique of laser vibrometry allowed 
obtaining clear defect patterns in the image of total vibrations even if the corresponding  SNR values were 2-4  times 
lower than in the case of resonance stimulation (figure 5, wide frequency range).  

We  believe that the technique of resonance ultrasonic IR thermography allows determining defect location and 
dimensions by total vibration patterns for some minutes with a reasonable spatial resolution (few mm). However, a test 
time may become very long if, while determining local resonances, the number of spectral lines should be big enough to 
perform efficient Fourier transform and/or the number of scanned points  should be increased.  In this case, SNR values 
can be enhanced by 2-4 times (in a particular experiment) but the test time will be twice longer. In fact, a needed test 
time can be chosen by the operator depending on inspection task sand a required efficiency of defect evaluation.  

3.4. Laser ultrasonics 

Some limitations of this technique are relatively small scanned areas and low test productivity. Laser ultrasonic 
method uses broad-band ultrasonic waves generated by a laser pulse. The waves scattered by composite structural 
inhomogeneities are recorded with a high temporal resolution thus allowing depth resolution better than achieved in 
common ultrasonic NDT.   
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Fig. 4: Local resonance vibrations: D1 – 2.28 kHz (top), D2 – 3.25 kHz (middle), D3 – 2.65 kHz (bottom) 
 

 

 
 

Fig. 5: Total vibration pattern obtained under low-power ultrasonic stimulation by applying SLDV technique  
(wide frequency range) 

 
Figure 6 shows the interface of the computer program used in data processing. The size of the scanned area 

was 150×80 mm (see figure 1), scanning step - 2 mm. The signals obtained are represented in a 3D form (figure 6); the 
XY, XZ and YZ planes depict the sample cross-sections (slices) at fixed coordinates Z, Y and X respectively. The X and 
Y coordinates are fixed by the position of both the vertical and horizontal markers on the XY-plane, and the fixed Z-
coordinate is determined by the horizontal marker on the XZ plane. By correspondingly changing position of markers, it is 
possible to visualize the internal structure of the sample. The Z-coordinate corresponds to a time delay of the acoustic 
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signal. In fact, by knowing velocity of ultrasonic waves in a test material, one can convert time delays in the in-depth 
coordinate Z, while grey tone images represent signal amplitudes. 

 
 

 
 

 
Fig. 6: Example of laser ultrasonic test results (processing program interface) 

 
 
In figure 6, the sample front sample is represented by a white-colour line because here an ultrasonic pulse 

penetrates the composite from the medium of lower density; respectively, the rear surface appears as a wide dark line. It 
is clearly seen that the material is essentially inhomogeneous. It is also characteristic, that, in the defect D2 area, the  
bottom reflection of the ultrasonic waves occurs at the half sample thickness (see the XZ-plane). The area of impact 
damage (D3) contains plentiful cracks while the rear-surface signals are absent. In fact, acoustic signals cannot 
penetrate through the damaged area. 

Thanks to high spatial resolution of the laser ultrasonics,  results of applying this test method are sensitive to 
small variations in composite density thus producing images of which treatment is not straightforward requiring a 
considerable operators’ experience. A figure of merit for laser ultrasonic images are local variations of acoustic 
impedance that is the product of the ultrasonic wave velocity and density. Therefore, areas with delaminations, disbonds, 
excessive porosity, etc. look “darker” in regard to areas of a regular texture. On the other hand, if the object texture is 
“rough”, the contrast of defects can be relatively low. For example, fiber waviness makes the image of a lower contrast 

because, in the presented case, the slice thickness is about 15 m, and the defect partially occupies other slices.  
Figure 7 shows some sets of slices in the area of the defect D3. The XZ-planes correspond to different material 

depths: approximately 0.5, 1.4 and 2.9 mm. By evaluating these results, one can see that the zone of internal structure 
damage has the form of an inverted cup with the cup bottom placed on the area of front surface impact. The cracks 
shown in the XY slices look like concentric circles of which radius increase with depth. 
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                    a)     b)                       c) 

 
Fig. 7: XZ (top row) and XY (bottom row) slices: a - depth 0.5 mm, b - 1.4 mm, c – 2.9 mm 

   
4. Conclusion 

“Classical” IR thermographic NDT based on optical stimulation remains a reliable technique in the detection of 
various types of defects in graphite epoxy composites. It can be effectively complemented with ultrasonic stimulation 
which might be preferable if “kissing” defects are to be detected.  Laser vibrometry combined with the principle of 
ultrasonic resonance stimulation appears as a very sensitive NDT method but it is still time-consuming and expensive. 
The technique of laser ultrasound seems to be a good addition to other NDT techniques due to its very high spatial 
resolution and tomographic data presentation.  But this technique is also time-consuming and requires high operator 
qualification when identifying composite structural inhomogeneities.   

This study was supported by the Russian Scientific Foundation grants # 17-79-10143 (data processing) and 
#17-19-01047 (experimental setups). 
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