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Abstract  

This paper presents a thermal analysis and methodology of thermal parameters identification of thermal 
multilayer structures using thermographic measurements after dynamic heating (or cooling) the investigated objects. 
During the thermal transient process, thermal images are recorded, with the highest possible frame rate of the camera. 
Then, temperature and power signals are transformed into the frequency domain, to get finally the thermal time 
constants distribution corresponding to the thermal parameters of the structure. A brief description of TOI program 
developed in MATLAB environment as well as the exemplary identifications of 2 different thermal objects are shown.  

1. Introduction  

Many scientific efforts have been recently undertaken for dynamic object identification in different applications 
[1-26]. In heat transfer domain, there is the commercially available software for thermal object characterisation based on 
Network Identification by Deconvolution (NID) technique [2,3]. It is mainly dedicated for thermal characterization of 

microelectronic devices and systems [25]. It is limited to the contact temperature measurement using either internally 
built-in or external contact temperature sensors. For IR temperature measurements, no tools are available for thermal 
object identification. In addition, the NID methodology is not directly suitable for medical applications, e.g., for screening 
of skin pathologies and inflammations [22]. 

In this paper, we present a simple software tool for dynamic thermal object identification written in MATLAB 
environment. The block diagram of the overall algorithm of Thermal Object Identification (TOI) is presented in fig. 1. 
Firstly, the temperature vs. time is measured on the surface of the object using a thermographic camera. It is 
recommended to use the fast thermal camera with the frame rate of a few hundreds Hz at least. Then, the pre-
processing is performed for noise reduction. Next, the Laplace transform of both the temperature and power is 
numerically calculated in order to get the thermal impedance (transfer function). The thermal impedance is approximated 
by the ratio of polynomials with the declared order. Typically for a thermal object, the order of numerator is one less than 
the order of denominator. Using the optimization one can get the coefficients of thermal impedance in the Laplace 
domain in the form of ratio of polynomials. It is a crucial part of the implemented method. Finally, one can get thermal 
discrete time constant distribution (Foster network) and cumulative structure function (Cauer network) [1,21,25].    

2. TOI methodology  

The new TOI methodology is presented in detail in fig. 1. It starts with pre-processing for data smoothing and 

noise reduction. In addition, for medical applications with IR temperature measurements, the movement correction of a 
patient is necessary [22]. Then, the Laplace transforms both for temperature and power are calculated. It leads directly to 

the thermal impedance in frequency domain Zth(j) typically represented in the Nyquist plot. The key step of the method 
is the approximation of thermal impedance in frequency domain by the ratio of polynomials. It is done by using the Least 
Square Method (LSM) [5-8]. Next, the Foster and Cauer network transformations are applied in order to support the 
physical interpretation of heat transfer in multilayer thermal structures. The very final stage of the proposed methodology 
is the convolution of the impulse function response (from Foster network) with a given power p(t) to analyse the thermal 
response of the system for different excitations. It can be helpful e.g. in Non-Destructive Testing to estimate phase delay 
using a sinusoidal or periodic heating.   
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Fig. 1. TOI methodology in frequency domain  

In order to calculate the complex thermal impedance Zth(j), temperature and power measurements are 

needed. Thermal impedance in frequency domain is calculated by the Laplace transforms. 

              

 

 

                    

 

 

                                                                        

where s=j,  is the angular frequency in rad/s.  
 

Integrals in eq. (1) are numerically calculated using Filon or Simpson rules for even or uneven interval between 
the samples. One should bear in mind that Laplace transform needs integration up to infinity. Experimental data from any 
measurement stops after some time. It can cause the errors of the overall processing due to the finite time the 
temperature samples are available. The way of reducing this error is to wait relatively long time during measurements to 
reach almost steady state conditions and to approximate the last part of the signal by a constant value.  

The result of the Laplace transformations gives the thermal impedance in the form         
    

    
, which can be 

graphically represented in the Nyquist plot for s=jω.  

Next, the thermal impedance in frequency domain is approximated by a ratio of polynomials.  
 

       
    

    
                                                                                                        

 
According to the physical understanding of heat transfer in solids, the thermal system can be modelled by a low-

pass transfer function. To fulfil the condition that the temperature vs. frequency in a monotonically decreasing function, 
the order denominator should always be greater at least by 1 than the order of the numerator. In other words, the number 
of zeros of the thermal systems is less by one than the number of poles, and they appear alternatively. The user can 
define the order of a thermal system taking into account, for example, the number of layers of the investigated structure. 
The general equation of the approximated thermal impedance function is presented in form of eq. (3).  

        
      

    
   

    
    

   

                                                                                             

where n – is the order of thermal system. 
 
The approximation of the complex thermal impedance as a ratio of polynomials is calculated using LMS fitting 

algorithm for different frequency values (in practice for different angular frequencies k, k=1,2…,N). The number and 

distribution of these angular frequencies has to be selected carefully and they should cover the appropriate frequency 
range corresponding to the distribution of the thermal time constants of a thermal system.  
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Because the result of the approximation depends on the distribution of frequencies the Nyquist plot is calculated 
for, the values of angular frequencies are chosen as it is presented in eq. (4). 

 

      
                                                                                                            

where k = 1,…N is the number of angular frequency, and ω1 is the lowest value, the Nyquist plot and complex thermal 
impedance are calculated for.  

If one assumes to analyse thermal impedance in the range [1, N], the distribution coefficient is equal to 

 =(lnN - ln1)/N. Frequencies 1, N should be lower and greater than 1 < 1/1 and  N > 1/N by at least one octave, 

where 1 and N are the largest and the smallest thermal time constants of an identified object. 

 

The important issue of the overall algorithm is the low-pass filtering of input (power) and output (temperature) 
signals before LMS fitting. There are many scientific discussions on this topic [5-9]. Such filtering significantly reduces 

the noise of the signals and makes whole algorithm more stable and precise. There are different filters proposed in the 
literature. One of the possible filters is given in eq. (5)  

      
  

       
  

                                                                                                 

where the order of the filter nf should be comparable with the order of a thermal system.  
 

We notice, that in general case nf can take either an integer or a real value. Taking into account eq. (3), the 
optimisation problem of finding the unknown values of the coefficients Ai and Bi consists in minimizing the function (6). 

  

                 
   

 

   

                
 

 

   

    

      

     

                                               

 
One has to underline, that in general case the filter can iteratively vary during optimisation to get the better 

fitting. It leads to a nonlinear LSM approximation discussed in the literature [5-9,26]. 
It is convenient to rewrite eq. (3) of thermal impedance in the multiplicative form (7). 
 

       
    

  

                 

                        
                                                                   

The roots of denominator of eq. (7) correspond to the thermal time constants of the Foster Rf-Cf network.   

        
       

                                                                           
 

In typical TOI process, the poles of the thermal impedance Zth(j) should be real and negative. It happens if the 

original thermal impedance obtained from eq. (1) is correct, the temperature and power are the smooth curves without 

much of noise, and the thermal process reaches the steady state.  Poles of Zth(j) i.e. the roots of denominator D(j) 
denote the angular frequencies of Foster Rf-Cf network and can be expressed as: 

   
 

  
 

 

      
                                                                                                      

 
In this way, one can get the Foster thermal Rf-Cf network – eq. (10). 
 

        
  

     
  

   

      

 

   

 

   

                                                                                       

 
where Rfi can be easily calculated using the residues of thermal impedance (3). 

  

       
     

 
    

    
     

     

 
           

    
  

    

     
                                                                     

 

 
Fig. 2. Foster and Cauer thermal networks 

Next step of the TOI methodology is the transformation of the Foster to the equivalent Cauer network (fig. 2). 
The thermal resistances and capacitances RCi and CCi are calculated by multiple polynomial divisions [17].  
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From the Foster representation (10), the impulse thermal response of the thermal system in time domain can be 

presented in the form of eq. (13). 

             

 

   

 
 

 
                                                                                                   

Finally, by performing a convolution of the thermal impulse response in time domain with any given power, one 
can calculate the thermal response of structure for different excitations.  

                               
 

 
  

 

   

                                                                         

where * is convolution. 
 

Comparison of temperature measurement T(t) and the result of convolution   (t) confirms the correctness of the 

analysis.  

3. TOI software  

The TOI program is written in MATLAB environment. The input data can be loaded from the file as the functions 

of time. The power can be defined or loaded by the users together with the temperature input data. The program allows 
calculating: 

 thermal impedance in frequency domain Zth(j) smoothed by approximation using ratio of polynomials – 
representation of the thermal impedance in a Nyquist plot, 

 magnitude and phase characteristics,  modulus{Zth(j)}, angle{Zth(j)}  – Bode plots, 

 discrete thermal time constants distribution R() – Foster network, 

 cumulative structure function – Cauer network, 

 temperature response vs. time for a given power. 
 

 
Fig. 3. Main screen of TOI program 

The TOI program is intuitive and user-friendly. The functions are simple activated by buttons with graphical 
icons. The results are presented either graphically by plotting curves or numerically in the form of tables. All calculated 
data like approximated Nyquist plot for specified frequencies, coefficients of polynomials, values of Ri and Ci for Foster 
and Cauer networks can be saved in the Excel file for further use. In addition, all plots generated by the program can be 
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stored on the disk as well. It can be helpful to create final reports from the analysis. For comparative reasons, it is 
possible to perform analysis either in frequency (FD) or time domain (TD), as it is shown in fig. 1. The program is 
available with the Freeware licence on the website of the first co-author from the Lodz University of Technology.  

4. Exemplary results 

In order to verify the TOI methodology, we tested the program for a given complex thermal impedance. A semi-
infinite solid material with a small heat source on top was chosen [1]. It can be the model of a small microelectronic 
device on the surface of a thick semiconductor substrate. The thermal impedance of this thermal system can be 
presented in form of eq. (15).   

       
    

      

                                                                                                        

It can be proven that the time constant distribution Rth() is a continuous function with the maximum value for  = 

0. Function Rth() can be analytically derived and it takes form (16) [1]. 

       
    

 

 
 
  

  
 
  

                                                                                                            

Continuous time constant distribution means infinite number of discrete time constants. From practical point of 
view, the number of time constants can always be limited. In this example, in order to get the reference results, we used 
the in-built function available in MATLAB program for dynamic system identification (Transfer Function Estimation - tfest) 

[26]. The results for Zth0 = 5 K/W and 0 = 75 s, and for n=15 time constants are presented in figs. 4-6.   

 
Fig. 4. The Nyquist plot of the complex thermal impedance defined by eq. (15) 

 

Fig. 5. Discrete time constant distribution (n=15) for the 
thermal impedance (15)  

 

Fig. 6. Cumulative structure function for the thermal 
impedance (15) 
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The presented software is intended for use in both technical and biomedical applications. We performed a 
medical experiment to investigate the thermal parameters for a skin with and without visible inflammation. The skin was 
cooled down by a few degrees using special cooling devices [22]. We tested gels, metal blocks pre-cooled in a fridge or 
an electronic cooler equipped with Peltier elements. After few seconds of cooling, the cooling device was removed and 
temperature rise was registered by the fast cooled photon thermal camera. The results of thermal analysis using TOI 
concept are shown below in figs 7-11.    

 
Fig. 7. Original and approximated complex thermal impedance Zth(j) – Nyquist plots 

 
Fig. 8. Magnitude and phase for approximated complex thermal impedance Zth(j) - Bode plots 

 

 
 

Fig. 9. Comparison of step function response for thermographic measurement and approximated Zth(j)= 

N(j)/D(j) (after convolution) 
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Fig. 10.  Comparison of temperature step function response in log scale for thermographic measurement and 

approximated Zth(j)= N(j)/D(j) (after convolution) 
 

 
Fig. 11. Exemplary temperature response of the system for sinusoidal excitation 

5. Conclusions 

The new software for Thermal Object Identification in frequency domain was presented. It can be effectively 
used with contactless measurements performed using thermal cameras. The software allows approximating the thermal 
system either by the Foster network – discrete time constant distribution, or Cauer one – the cumulative structure 

function. Obviously, the faster the IR thermographic camera, the shorter time constants can be identified. The reports are 
generated by the software in graphical and numerical forms. The user can verify the correctness of the result by 
comparing measured temperature with the approximated one using TOI methodology both in linear and logarithmic 
scales. The software is available under the Freeware licence regulation. It is planned to link TOI software to any IR 
camera having the drivers both for Windows and Linux systems (possible to Android as well). 
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